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ABSTRACT

This study examines optimal inspection-repair-replacement policy for the discrete-time
partially observable Markov decision processes over an infinite horizon in which the state
space is finite and the action space consist of “no action, inspection at beginning, instanta-
neous repair and replacement at beginning.” Upon inspection to determine the precise state
of the system, an additional cost is required. It is noted that repair cannot return the system
to an as-good-as-new state. First, we construct the recursion to maximize the expected total
discounted reward. Useful results are derived under the conditions of partial orders, namely

-~ two. Consequently, we show that the optimal policies have the structure which break up the
space of state probability vectors into at most five-region. Next, alternate modeling results
are set forth within two different action spaces: “no action, instantaneous inspection and
repair at éhd, instantaneous replacement at beginning”; “no action, inpection at beginuing,
instantaneous repair and replacement at end.” Finally, several relevant studies are presented
for further consideration. .

Keywords: partially observable markov decision processes (POMDP’s), stochastic domi-
nance, monotone likelihood ratie, totally positive of order two, inspection-
repair-replacement policy.
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I. INTRODUCTION

The problems of Markov decision processes (MDP’s) subject to deteri-
oration have been addressed by considerable literatures (for surveys and its
applications see Barlow et al. (1965), McCall (1965), Pierskalla and Voelker
(1976), Sherif and Smith (1981), Heyman and Sobel (1984), White (1985),
White and White (1989)). For an excellent overview of partially observable
Markov decision processes (POMDP’S), see Monahan (1982). POMDP is a
generalization of a Markov decision process which permits uncertainty regard-
ing the state of a Markov process and allows for state information acquisition.
Later White and Scherer (1989), and White (1991) integrate several computa-
tional algorithms for the POMDP’s problems. Note that the POMDP can be
converted into an equivalent of a completely observed MDP, following Astrom
(1965), Sondik (1978), Sawaki (1963), Hernidndez-Lerma and Marcus (1987),
Bertsekas (1976).

Results characterizing the optimal policies for POMDP’s differ depend-
ing on the specific assumptions of the model. The ideal conclusions are for
the case where it is assumed that the underlying state of the system can
be completely determined only through costly inspection-repair (see Klein
(1962), Ross (1971), Smallwood and Sondik (1973), Kander and Raviv (1974),
Ehrenfeld (1976), Rosenfield (1976a,b), White (1977,1978), Luss (1976, 1983),
Sernik and Marcus (1991a,b)). Moreover, most models assume that a repaired-
replaced system often returns to state which is as-good-as-new. In actual case,
many systems subject to deterioration, including military equipment, elec-
tronic products, and manufacturing systems, are impossible to resume to the
as-good-as-new state despite repair.

Summarizing results from previous related studies, we see that general
models with inspection, repair and replacenient options have not yet been

solved. Hence, we relax this assumption and presume that the action space

— 154 — |



oMM EETARALBETHE-HE —TELR

composing “no action, inspection, repair and replacement,” bring forward the
construction of the recursion for the optimal value function.

This paper adopts stochastic dominance (=) and monotone likelihood
ratio (>mi,) partial orders, which are presented in Karlin and Rinott (1980),
Lovejoy (1986,1987) and Ferndndez-Gaucherand et al. (1991) for POMDP’s
problems on the order of the state probability vectors. Totally positive of order
two (TPs) in Albright (1979) also applies to identify the preferred ranks for
the system deterioration. Furthermore, under some reasonable conditions and
relevant properties, such as isotone (antitone) function discussed in Topkis
(1978) and Lovejoy (1985), we are able to arrive at the optimal structural
results, similar to those obtained by Ohnishi et al. (1986), and Wu and Chen
(1991).

This paper is organized as follows: Section 2 describes the model in detail
and states several definitions; Section 3 provides some assumptions; Section 4
formulates the recursion of the optimal inspection-repair-replacement problem
under partial observation over finite and infinite horizons. In Section 5, well-
known results for the optimal value function and optimal policies are derived.
Section 6 describes the alternate modeling results. The paper concludes with

a discussion on potential issues of the model.

II. MODEL DESCRIPTION AND DEFINITIONS

We consider the discrete-time Markov decision processes {X;, t =0,1,2,...

having state space S where S = {1,2,...,n}. Here, 1 represents the best state

--and n the worst state. Given two states ¢ and 4, i < j means that t11,e___pe_;‘fo}j;_r

mace of state j is worse than that of state i. We alsolet r = {r1,...,7r, ..., 70)
and r stands for the reward vector, where r; denotes the immediate reward in
state ¢ which is nonincreasing in state number. It is assumed the system un-

dergoing deterioration is monitored imperfectly at each epoch t,£ =10,1,2,.. ..
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For convenience, we first define the space of state probability vectors [1(.5),
where H(S) ={reR":0<m< I,Zn:frz- = 1}. Hence, the only avail-
able information about the state space t(z)zihe decision maker is to specify a
probability vector 7 with elements 7, where m; = P{X,; = i}

The decision maker has four alternatives at every time period from the
action space A = {0,1,2,3} and ¢ € A, where 0,1,2,3 denote the decision
for no action, inspection at beginning, instantaneous repair and replacement
at beginning, respectively. It is assumed that an inspection cost, denoted by
I, is accrued to be independent of the underlying state. After inspection we
can identify the precise state of the system. We also assume that only when
replacement action is taken in state ¢ with state-dependent cost C;, can the
system be restored to an as-good-as-new state. Due to the fact that repair does
not restore the system to the best state from its current state ¢, but probably
to a certain better state g,q < ¢. The repair cost of returning to the state ¢
is M{. Then, let M? = (0,...,0,M7,... M, .., MJ), and M9 denotes the
repair cost vector.

Furthermore, we let transition matrix under “action a” be P* = fj}nxn,
where pf; represents the transition probability in state : and action a is per-
formed, then it moves to state j. Specifically, P is the Markovian deterioration
matrix where no action is taken. For each decision epoch, the state of the sys-
tem is observed partially by some monitoring mechanism, a finite number of
observations is received. Let O = {1,2,...,w}, and O represents the obser-
vation space. We also let the observation matrix be Q°¢ = [qj‘k]nxu where the
¢} represents the conditional probability of observation, ¥;;; = k, given that
X:o1 = j and action o is perforthed. Here {Y; € O, ¢t =1,2,...} is the observa-
tion process. Finally, we also let #P® = ((TrP“)l, (wP%)s,..., (wP“)n) e [1(9),
and wP® designates the one-step transition probability vector that state prob-

ability vector is 7 and action « is taken. The controllability of observation
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processes depends on the choice action a in each period, and is related by the

following known conditional probabilities:

o(r,0) = (c(1|x,0),0(2/7,0),. .., 0(wlr,0)),

and
O(r,a,k) = (6(1|r,a, k),6(2/m,a,k), ..., 6(n|7, 0, k)
| P*)i9%
where a(kir,a) = (mP°Q%; and 6(j|r,a, k) = ((:Pa%?;’" for all = € TI(S),
k
and a € A — {1}.

To construct an optimal policy over an infinite horizon, we let vl ()
denote the optimal expected total discounted reward in periods ¢ through
T, discounted back to the beginning of period £, given the state probability
. vector m. The problem is to obtain an inspection-repair-replacement policy
maximizing the expected total discounted reward with g € [0,1] over infinite

horizon.

Before considering the assumptions of the model, we need to define the

following

Definition 2.1
Fm = {f € R™: fl 2 f2 Z 2 .fn}: where f = (fluf?: . '-7fn)" That iS,

F™ denotes the set of all n dimensional vectors with nonincreasing components.

We then define the following two partial orders:

Definition 2.2
Given w and '€ TI(S5), we say that .

k k
N Z :n-zz?r; for i,k € 5,

i=1 =1
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and

T 2miem if 4 <j implies mm; > mm; for 4,5 € S,

where >, and >, represent the partial orders of stochastic dominance and

monotone likelihood ratio respectively.

Definition 2.3
P? is said to be the totally positive of order two (T5), if

a 0
Pi; Pi

2oL 1=0 for k>i,01>4,4,5.k 1€ S ae A—{23}.
Pi; Pi

Definition 2.4

Letting (H(S), > enir ) be a partially ordered space, we say that @ :
[1(S) x A x R — R has isotone differences on (H(S), onir ), if @(Tr,q,v) —
®(m,a’',v) > ®(n',a,v) — &(x',a',v"); and @ : [[(9) x A x B — R has antitone
differences on (H(S), < nir ), if®(m,a,v)—®(r,d/,v) < (v, a,v)—8(x,a', v)
for m Zppr v, M, 7 € (H(S),>mg,. ), and a > d',a,a’' € A.

III. ASSUMPTIONS

The basic assumptions are stated below:

(A1) P®is a n x n Markovian deterioration matrix for P} < 1,1 € S — {n}
and P2 =0, j <'i where a € A - {2,3}. It implies that P and P! are
upper triangular. We also assume that P° and P! have TP, property.

(A2) Q“isanxXw TP matrix for a € A — {1}, and @Q° = Q? = @3, ie,
¢ =ah =g forjeSkeoO.

(A3) —M?¢ F™
(Ad4) —C e F™.
(A5) R+ M?¢e F™
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(A8) R+C € F™.
(A7) —M9+C e F™
(A8) —C + M e F™.

(A1) claims that the system will deteriorate when no action or inspection
is performed, and it has the IFR property (see Derman (1963) and Rosenfield
(1976a), in which a straightforward result is that TP, implies JFR). The de-
terioration will accelerate in its worse state. We also consider the repair or
replacement action at the beginning so as to improve the current state or to
restore to the best state. (A2) implies that the observation matrix is indepen-
dent of the actions, excluding inspection, after which the better state gives
rise to better observations. (A3) and (A4) state that repair and replacenient
costs are nondecreasing in state. (A5) and (A6) assure that the performance
of repair and replacement are nondecreasing in state. (A7) shows the gaps
between the replacement and repair costs tend to get smaller at each deterio-
ration state. In another words, the increasing rate of the repair costs becomes
greater than that of the replacement costs. Lastly, the opposite condition in

(A7) is illustrated by (A8).

IV. MODEL FORMULATION

Let @: TI(S) x A x R — R, we then establish the following recursion:

o) = g0,

mr + ,BZ (K|, 0) vm (e(w, 0,k)) ,a=0
ar— I+ Z 7Pl (€) ,a=1
= maxJ A=1 '

a(—M?) +r,+ 8 f: o(k|m, 2)vi, (H(ﬂ, 2, k)) ,a=2

m(=C) + 1y +ﬁz (klz, 3)0%,, (6(r,3,k)) a=3  (4.1)
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fort=1,2,...,T — 1, and vZ(x) = 0 for all = € TI(S).
We let v7(r) = v(r) as T — oc. The new recursion is given by the

following.

1(r) = mer(B(rav)

ﬂ"r—{—ﬁz (k|m,0) ( WO,k)) ,a=0

wr—I-l—ZvrPUive) ,a=1

= max { =1

T(—MY) +r,+ 08 i o(k|r, 2)v(9(7r, 2, k)) ,a=2

T(—C +r1+ﬁz (klm, 3)v(6(r,3,k)) a=3 (4.2)

.

Since we assume that the state levels for system deterioration can be
observed through inspections, returned to a better state after repair, or reseted

to an as-good-as-new state by replacement, then v(7) becomes

o) = ma.x{@ T,a,v)}

a€A
wr—l—ﬁz (k|r,0) ( (m, 0, k)) ,a=0
ar — I + Z (rP%);u(e?) ,a=1
= max { i=1

m(— M‘*‘)+rq+ﬁz (kle?, 0)u(B(e?,0,k)) a=2

m(-C +r1—|—b’L o(kle', 0w (8(e!,0,k)) =3  (43)

for all = € TI(S), where €? denotes the gy element of state probability vector

which is 1.

V. STRUCTURAL RESULTS

To study the characteristics of ®(x, a,v) and v(7), we need the following

Lemmas.
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Lemma 5.1 If 7 >, 7', then 7 >4 o’ for any «, 7' € [](S).

Proof: Refer to Lemma 5.1 in Ferndndez-Gaucherand et al. (1991). O
Lemma 5.2 If Aisak x! TP, matrix and B is a I X n T'F matrix, then
the product AB is a k X n TPy matrix.

Proof: It ig identical to Lemma 4.3 in Ohnishi et al. {1989), and so the proof

is omitted. 0O

Under assumptiom {1} and for any =, 7' € (H(S), > nir ), all of the

following Lemmas hold.

Lemma 5.3 If 7 >,,,-7'. then 7 P® >, 7' P2

Proof: Since >,y ' implies that (:,) is TP, from the definitions (2.2) and
(2.3), it follows from Lemma 5.2 that the product (:,)P“ is also T'F;. Hence,
we have wP® >, w'P%. 0O

Lemma 5.4 If 7 > 7', then (7, a, k) >, 0(7', 0, k).

Proof: From Lemma 5.3, we have w P® >, 7' P%, i.e

(7 P%); (7' P%);

. >0foralli<gjandi,jeES.
(mP%); (' P%);

Hence,

(mP?)igy, (o' P?)ug,
0ilm, a, k) O(ilr' 0, k) (7P°Q%);, (x'PaQe),
0(j|7,a, k) 0(5|7", a,k) (mP*);q5, (7' P%);45

| (rPeQ%) (' P2Q")s

g | EP

( PU‘Q ) (W’PQQE) (xP%); (r rPa),

which completes the proof. DO
Lemma 5.5  Under the assumption (2), we have 8{(m, a,h) >, 8(7, a, k)

for h<k and'h,k €0,a€ 4A-{2,3}.
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Proof: With regard to the assumpption that (Q* is a TP, matrix for 7 < j and
h < k, it follows directly from definition (2.3},

(WPu)ith (mP%):q,
B(ilﬂ—:a': h) g(ﬂﬂ—aa’:k) (ﬂ'PaQa)h (WPaQa)k
8(jlx, a, h) 6(j|r,a, k) (P?);i@5n (TP%);aj,
(TPe@%)n (mPeQ%):

__@PP), |
R T DNCI DN

>0
Q_?h Q’}lk

This is equivalent to #(x, a, h) >m, 8,0, k). O
Lemma 5.6  Under assumptions (1)-(2), if # >, 7', then o(m, a) >
(', a).
Proof: Using Lemma 5.2, we know that nP*Q® >, 7' P*Q%, i.e. o(m,a) >mur

o(n',a). O

In order to demonstrate the characteristics of the optimel value function

v(r), we let f be a real-valued function on R™ such that f: S — R* € F™,

Lemma 5.7 Ifr > «', then f > n'f.
Proof: Applying Lemma 5.1 and Derman’s (1963) IFR property, we derive the
result straightforwardly. O

According to assumptions (1)-(4), it is a fact that v(r) is monotonically

nondecreasing in m with respect to >, partial order.

Lemma 5.8 If 7 >, @, then v(x) > v(7').
Proof: Since R, — MY, and —C € F", we can use Lemmas 5.4-5.7 and recursion
(4.2) to conclude that

v(m) = Itl;leaj{{q)(ﬂaawv)}
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, r + 3 i o(k|m O)'U(H(?T, 0, k))
k=1
ar — I+ 8> (7 P)iv(e’)
= max =1 w
T(—M) + 1y + B o(klr, 2)v(6(r,2, k)
k=1
m(—C)+m + 8 Z a(k|m,3)v (G(W, 3, fu))
7r'r+ﬂz (B(W OL’))
wr—I-l—ﬁZ (7' PY);u(e)
> ma,xJ =1
T (-M?) +71,+ Z (k|=', 2)v (9(71", 2, k))
7 (=C)+ +ﬁz (kln', 3)u(6(n', 3, k))
: l = u(7n') |

for all m, 7' € (H(S), > lr ) =

The following Lemmas provide sufficient conditions for the main struc-
tural results.
Lemma 5.9  Under the assumptions (1)-(7), if # >, 7, then
a) &(m,0,v) — ®(m,2,v) > ®(x',0,v) — (7', 2, v);
b) &(7,0,0) — ®(m,3,v) > (7', 0,v) — ®(«', 3,v);

c) O(m, 1,v) — ®(m,2,v) > &(x/, 1,v) — ®(x', 2, v);
d) <I>(7r Lv) —®(m 3 v) > &', 1,v) — &(«', 3,v);
e) &(m,2,v) — @7, 3,v) > ®(',2,v) — B(n',3,v).

. ('
e Proof of (a): Based on assumptions (1)-(5), Lemunas 5.4 and 5.6-5.8, we know
that

$(m,0,0) — O(7,2,v)

W

— et M%)+ B [za(khr,ow( (m,0,) = 3. ot

k|, 0) ( 6(e?, 0, A))]
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> (r + M) + [i (kix’, 0)u(0(x',0, k)) — 3" o(klet, 0)u(0 v (0 eq,O,k))]
E—1 k=1
= &(r'.0,v) — O(7', 2, v)

Analogously, we can prove the remaining results. [

By wusing definition (2.4), Lemma 5.9 reveals that ®(r,a,v) has antitone

differences on

(TL(S), 2 ) x 4%, A = {02 (TI(S), 2mir ) x A%, A" = {0,3);
(TI6S), Zomir ) % A%, A2 = {1,225 (T1(S), 2omir ) X A%, A° = {1,3};
(H(S), 2 mir ) x A*, A* = {2,3} respectively.

Hence, there exists an optimal policy which satisfies Lemma 5.9, mono-
tonically divided into at most four regions, no action, inspection, repair, and
replacement. It means that the more deteriorated the state of the system is ,

the higher the action is taken.

As in the previous lemma, by assumptions (1)-(6) and (8), the following
lemma is yielded.
Lemma 5.10 I 7 >, 7 then
a) ®(m.0,v) — &{m,2,v) > &(#,0,v
b) ®(r,0,v) — ®{(x,3,v) > ®(=',0,v
c) &(m, 1, v) — &{(r,2,v) > &', 1,v) — &(«, 2, v);
d) &(r, 1,v) — ®(x,3,2) > ®(r',1,v) — ®(x', 3, v);
e) ®(m,2,v) — (7, 3,v) < @(7', 2,v) — ®(r', 3, v).

Proof: It is similar to Lemma 5.9 and thus is omitted. O

- (7', 2,v);
)

) = ¥
) — ®(x', 3,v);

Lemuna 5.10 states that ®{x, a,v) has antitone differences on

(T1(S) Zmir ) x 4%,4° = {0,2} (T](S), 2mir ) x AL, 41 = {0,3);
(H(S}, > ndr ) x A2 A% = {1,2}; (H(S), > nir ) x A%, A% = {1,3} respectively.
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However, (H(S)., > onir ) has isotone differences on 4* = {3,2}.

Obviously, the optimal policy satisfying Lemma 5.10 is divided at most

four regions (namely no action, inspection, replacement, and repair), but differs

from the previous lemma in the replacement and repair order. We see that
the more deteriorated the state of the system is, the higher the action is taken

on A% A' A% and A3 The more deteriorated the state of the system is, the

lower the action is taken on A%,

Lemma 5.11  &(7,a,v) ia an affine function for a € A — {0}.
Proof: Let 7 = (1 — A}t + Ax? for A €[0,1] and 7', 7% € (H(S), > e )
From recursion (4.3), we obtain

O(m,1,0) = ar—T+ ﬁi(wPD)w(ei)

=1

= [@= Nt Ar?r = [(1- )T+ ]

+(1-MN)3 i(ﬂlPo)w(ei) + AS zﬂ:(szo)@v(ei)

=1 =1

(1 X)®(x1, 1, ) + A®(x%, 1,0)

By the same token, the following equations can be derived.

®(r,2,9) = (1 - N« 2,v) + Ad(x?,2,9),
&7, 3,v) = (1-N0(7',3,v) + A\&(7%, 3,2). O

Lamma 5.12  &(7,0,v) is a piecewise linear convex function.

. Proof- ...

i) Let 7*, 7% € (H(S), > ol ) and m = (1 — A)z! + A=? for A € [0,1]. From

recursion (4.1), consider the case under the finite horizon 7', we have

®(m,0,v%) = 7r. 77 is a piecewise linear convex function.

ii) Suppose ®(7,0,v% ) is a convex function, then o] () is also convex.
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(1= A}# POQY), + A(w2PQ%),

iii) Fort < T — 1, and since PO, =1, we get
®(r.0,07) = et B fi o(klx, 0)of (6(r,0,k))
= 7r+ 8 Z (7 PPQ") ] (((T;l:;);g:))kjes)
L e

/\71.2P00 2P033k
X Q) ((x )q))

(rPOQ0)k (72 POQP)

1 p&y. 0
mr + (1 — A)ﬂg(wlpoQo)kvf((%ﬁ)jes)
. 2p0), 0
+A0 Z(wQPUQU)kU? (((ip—tlc);og;ﬁ)je?)

= (I—A)@t ]_(’ﬂ' 0 Ut)-l_/\cbt 1(?1' 0 Ut)

[A

where
((WPD)jq?k)jes = ((ﬂ;PO)IQSka (WPO)zqgk: ) (Wpo)nqgk)-
The result then follows by induction. O
Above Lemmas 5.11 and 5.12 initiate the following:
Lemma 5.13
a) ®(mr,a,v) — ®(m,1,v) are affine functions for a € A — {1}.

b) &(wx,0,v) — ®(mr, 1,v) is a convex function.

In addition to characterize the structural results of optimal inspection-
repair-replacement policy, we define the subsets of (H(S),zmgr ) for each

action:

D,={m ¢ (H(S), > nir ) v{n) = &(m,a,v)} for' a € A
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Lemma 5.14 D, is a convex subset of (H(S), > mir )
Proof: According to the definition of D, we know that if # € D; and o €
A — {1}, then ®(7,a,v) — ®(r,1,v) < 0 for all a € A — {1}. Similarly, for

7' € Dy, ®(x",a,v) — ®(n’,a,v) < 0. Provided the above and Lemma 5.13,

these inequalities hold:
@((1 — Ay + A, a,v) — CI)((I — )7+ A, 1,?)) <0 forall ae A— {1}.

The proof is therefore done. O

From Lemmas 5.9, 5.10 and 5.14, we arrive at the main structural results:
Theorem 5.1 (At most five-region policy I):

Under assumptions (1)-(7), if 7% >, 72, then there at most exist A, Az, A

and Ay, 0 < A € Ay < A3 € A4 <1 such that

Dy > [r', (1~ M)rt + Ar?]
D: > [(1= )t + r?, (1= Koyt + Agr?]
Dy D [(1-dg)wt + dg?, (1= Ag)r! + dgm?)
Dy > [(1=2g)m" + Agm?, (1= Ag)a + Ay’
Dy O _(1 — A7t 4+ Agr, 71'2]

where [rh, 7| = {r ¢ R": 7= (1 - A)rt + Ar%, A € [0, 1]}

Above theorem verifies that the optimal policy has at most five control
regions which are generated by Ay, Ag, Az, and Ay, It is clear that Lemma 5.14

. guarantees an inspection region in between two no action regions.

Theorem 5.2  {At most ﬁve—regibﬁrp(}nlici;_li):"W
Under assumptions (1)-(6) and (8), if 7! >,y w2, then there at most exist

/\1,)\2,/\3 and ).4, 0 < )\1 < /\2 < )\3 < )\4 < 1 such that
Dy D [?Tl, (1— X))t + )\lwz}
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Dy D [(1=do)wt + Ar?, (1= gyt + Mg
Do D [(1= Ag)r! + Aore?, (1—)\3)1r1+/\3‘7r2]
Dy D [(1 = Ag)w" + Agn?, (1 — Ar! + Ayrr?]
Dy O [(1 = A’ + Agn?, 7

where [, 7} ={r e R :7=(1 —l)\)'frl + Am?, A e [0,1]3.
Proof: By Lemmas 5.10 and 5.14, we obtain the results straightforwardly. O

Comparing Theorem 5.1 with the above theorem, the optimal policy
structures indicate that replacement and repair regions are interchangeable.
In view of management applications, Theorem 5.1 is applicable to general sys-
tems where the replacement cost is cheaper than repair cost during the worse
state; however, under assurnption(8), Theorem 5.2 is applicable to costly sys-
tems, e.g., military defense systems. Such systems usually are difficult to
obtain and its replacement costs are to high, especially from a certain worse
state on, the gaps between repair and replacement costs tend to narrow. Thus

the repair action is always a preferred alternative.

VI. ALTERNATE MODELING RESULTS

The above results focus on an inspection-repair-replacement model in
which all actions are taken at beginning, while the repair and replacement
costs depend on the state probability vector and reward earned relevant to the
improved state. In order to get more understanding of the porblem, we probe
into the below two different models.

First, we consider the case where the actions compose of terms for “no
action, instantaneous inspection and repair at end, instantaneous replacement
at beginning,” Obviously, the inspection cost I must be discounted, and the

expected repair cost differs from that of recursion (4.3). Hence, the recursion
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formula can be expressed as:

v(r) = max{®(r, a,v)}

(483 ofbim, 0)u(6(r,0,)
k=1
w4 B = I+ (P ()]
= MAax 4 =

. +ﬂ{[ga(”~‘|ﬁa 0)(8(r,0,k))] (—M7) +’U(69)}
m(-C +T1+ﬁz (kle*, 0) (9(61’0’k))

\

To characterize the structure of the optimal policy, the recursion (6.1)

can be rewritten as follows:

[ 7T + 8 z (k|m,0)v ( (7,0, k)) ,a=0
T+ ﬁ{ — I+ Z TI'PU)iU(Bi)] a=l
v(7) = max ¢ =1

e

o B{ [ ((P8) s 3 + (e} a2
m(-C +n+ﬁZ o(kle,0)u(6(e",0,k))  ,a=3

i

\

(6.2)

It is straightforward to show the proofs of Lemmas 5.9 through 5.14 and

the main Theorems 5.1-5.2 go through directly with recursion (6.2). Hence,

structural results remain the same.

Second, we treat the case where “no action, inspection at beginning,

1118ta11ta11eous repair and replacement at end.” Under these conditions, the

N optnnal policy can be constructed from the followmg recursion.

v(w) = 131Ea§{f1>(7r, a,v)}
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r+ 8 o(klr, 0y (8(x,0, k) =0
k=1
mr—I+0 Z (mP);u(e?) ,a=1
i=1

= max ¢

'fr'r-l-ﬁ{[ia k|r, O)( , 0, k))](—Mq)—Fv(eq)} ,a=2

fe=

vr*r-}—ﬁ{[io' (k|r, o)( T O,k))](—c)—i—u(el)} a=3  (6.3)

k=1

—

\

Similarly, it can be written as follows:

[

T+ Z o(k|r, 0)v (B(vr, 0, k)) ,a=0
ar — I + ﬁzn: 7 P%)w(e') ,a=1
v(7) = max S
xT + [3{ (> ((wPD)quk)jES] (—M?) + v(eq)} ,a=2
k=1
wr + ﬁ{ > ((WPO)quk)jES] (—C) + v(el)} ,a=3 (6.4)
\ k=1

Comparing recursions (6.4) and (6.2), we see that their difference occurs
at inspection and replacement, however, recursions (6.4) and (4.3) hold the
difference at repair and replacement. From here, we note that the common
difference between (6.4) and (6.2) on the one hand and (6.4) and (4.3) on the
other hand is the effect of replacement action, though this common difference

does not affect the proofs of the main structural results in this paper.

VII. CONCLUSION AND FURTHER STUDIES

In this paper, we have modelled the discrete-time, infinite horizon for
Markov inspection-repair-replacement problem which is partially observable.
Using partial orders of >,; and >, and T P; to identify the preferred ranks
for the state probability vectors of the system deterioration. Moreover, under

several reasonable conditions and relevant properties (such as isotone and anti-
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tone differences), in which the structural results are developed and summarized

as follows.

1. Based on assumptions (1)-(7), for “no action, inspection at beginning,
instantancous repair and replacement at beginning,” we have shown that
the optimal policy has at most five-region structure. These five regions

are ‘no action, inspection, no action, repair, and replacement.”

2. Under assumptions (1)-{6) and (8), we get the different results, in which

the regions of repair and replacement interchange.

3. Alternative models of “no action, instantaneous inspection and repair at
end, instantaneous replacement at beginning,” and “no action, inspeec-
tion at beginning, instantaneous repair and replacement at end,” are

presented, and the main results obtained in 1 and 2 remain the same.
The further research includes:

*  Developing the numerical techniques for solving POMDP’S.

+ Studying on the semi-Markov decision processes (SMDP’S} with partial

observation under the above models.
»  Considering continuous time for POMDP’S.

+ Treating the inspection-repair-replacement problem as the state-independent
of inspection cost and taking the probability of success in a precise state

into consideration.

--» Searching for the alternative of optimal policy structure if there exists & ______

statistical type I or type II errors for the imperfect inspection.
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