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ABSTRACT

The cil market in Taiwan is becoming very competitive nowadays than before,
which is due fo her recent entry into WTQO and the liberalized Petroleum
Management Law that allows international petroleum vendors to sell oil products in
Taiwan market. For a competitor to become successful, the control of gas stations,
pipelines, and storage tanks plays a key role, however, due to the space limitation and
the residents’ increasing awareness of environmental protection issues on the island,
the construction of new storage tanks is being recognized as an issue next to
impossible. Hence, any new vendors, undoubtedly, would have to rent tanks from
existing oil companies for operation. Thus, tank owner must schedule tanks
efficiently to satisfy the maintenance requirements, and, at the same time, meet the
operation needs for itself and leaseholders. In this study, we examine the tank
maintenance scheduling needs of an existing company, and investigate the
performances of an evolutionary computing approach, which is based on genetic
algorithm and simulated annealing. Experimental results with Integer Programming
were used to highlight the problem with this cbnventional approach. We also
conducted an extensive comparison with GA and GASA to confirm the superior

performance of this hybrid approach in tank utilization and computation times.

Keywords: scheduling optimization, genetic-simulated annealing algorithm, genetic

algorithm, oil-tank maintenance scheduling
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Introduction

In coupling with her recent entry into WTO, Taiwan government has recently
revised national Petroleumn Management Law, which has removed the monaopoly
element and has completely liberated the oil market in Taiwan. Any international
petroleum vendor can sell their oil products in Taiwan nowadays; this liberalization
has also brought in an intensive competition to the local oil market. The revised
Petroleum Management Law requires that vendars of refining and importing must
maintain a minimum safety reserve of 60 days or 50,000 kiloliters. For a vender to
remain in a competitive position, it is necessary to be able to control the distribution
channel of products, which consists of storage tanks, pipelines, and gas stations.
Therefore, for any new competitor, especially the international ones, it is essential for
them to have storage tanks facility. However, due to the problem of very limited
space available for constructing new tanks and the residents’ increasing awareness of
environmental protection issues on the island, the construction of new storage tanks
is such a thorny issue that few people even like to mention about it. The only other
alternative for any new comer is to rent tanks from existing oil companies. Thus, the
owner of existing tanks must be able to schedule tanks effectively to meet its own

needs as well as the needs of new comers.

Due to safety concern, tank owners must follow the American Petroleum
Institute (API) standard 650 to conduct physical maintenance of tank facilities, and,
during the maintenance period, a tank will be completely out of operation. It
currently requires the storage tanks must be inspected every two years, and
depending upon the corrosion degree inside the tanks, a so-called “open inspection™
procedure will be held every five to ten years, and each tank may take 60 to 240 days
of outage for each open inspection; depending on the capacity and construction type
of tanks. Thus, the development of a good maintenance schedule of storage tanks can
substantially help leaseholders increase the availability of tanks and revenue for the

OwWner.

In developing tank maintenance schedules, one existing company relies on both
the tacit knowledge of senior engineers and the package of linear programming (LP).

Initially, LP is applied to produce a basic schedule, which provides only a reference
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schedule, and will be revised by the experience of senior engineers whenever they
feel their knowledge can improve the schedule. This interactive approach can
sometimes be very ineffective, but management was not too much concerned with
this problem in the past, when the monopoly law was in effect and had excluded all
other competitors. The present competition environment has forced the management
to pay attention to the efficiency problem, and seek better methods to improve tank
facility utilization that will benefit both the owners as well as leaseholders. In
literatures, due to the integer nature of items in maintenance scheduling, Integer
Programming had been a major approach (Dopazo & Merrill, 1975; Kralj &
Rajakovic, 1994; Mukerji & Parker, 1999) in the past. However, its usefulness was
usually hindered by the curse of dimensionality and is poor in handling the nonlinear
objective and constraint functions that characterize the scheduling problem. These
methods give an optimal solution for reasonably sized problems. However, in the
case of large scale problems, the difficulty with dimensionality could limit the

applications of this mathematical optimization technique.

Another well-known heuristic optimization paradigm that has been applied to
scheduling problems is genetic algorithm (GA) (Goldberg, 1989; Storer, Wu & Park,
1993; Gen & Cheng, 1997; Jain & Meeran, 1998; Man, Tang & Kwong, 1999; Deris,
et. al., 1999; Negnevitsky & Kelareva, 1999; Lapa, Pereira & Mol, 2000; Wang &
Haﬁdschin, 2000), which is based on the “natural selection” of the evolutionary
mechanism that tends to move toward optimizing the behavior of a system. It, in
general, iteratively constructs a population of individuals, evaluating their fitness,
and generating a new population through genetic operations until a predetermined
number of iterations (generations) is reached or the fitness value converges. This
method seems to offer hopes for overcoming the difficulty 1P has experienced.
However, GA, as is known, can suffer from the non-convergence or early-
convergence (Rudolph, 1994; Ting, Li & Lee, 2002) for some problems. As a result,
GASA (Sun, Dayhoff & Weigand, 1994) was i'ecently proposed as a hybrid
optimization approach by combining the features of both GA and SA (simulated
annealing), it could keep the features of GA, and, at the same time, avoid the non-
convergence or early-convergence deficiency. This method may present a better

alternative to address maintenance scheduling problems than GA,
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The objective of this research is to investigate the performances of GASA in
scheduling oil tanks to meet maintenance requirements of one petroleum company
and maximize its minimum net reserve for leasing purpose. The performances of
conventional approaches of Integer Programming (IP) will be investigated first and
used for comparison purpose. In Section 2, we formulate the maintenance-scheduling
problem of storage tanks in an [P model and present its results. Section 3 provides a
detailed description of GASA. lts scheduling results and that of GA are given in

Section 4. Finally, conclusions are given in Section 5.

Integer Programming Formulation And Results

From the Integer Programming point of view, this problem falls into the
category of multi-period planning, where the consequences of decisions made in
earlier periods can affect the decisions of future ones. The core of its formulation is
the consideration of interactions between earlier pericds and future ones. However,
this seemingly difficult problem can be expressed in Integer Programming

optimization mode! as through they are actually decoupled.

In this particular case, the objective is to develop a tank maintenance plan for
the coming year to maximize the minimum weekly net reserve during the period;
hence it is sensible to have the period correspond to weeks of the year. Thus, the
period of the planning horizon in a year is 52-week. The inter-period interactions are
usually accounted for in models by the introduction of the “in-inspection” decision
variable, and these variables “link” adjacent periods. The decision that is to be made

at a period j is whether to start inspection on tank 7/ with each tank i having an
individual capacity ¢, and requiring 72, weeks for maintenance. Total demand for

week jis D ', and the total capacity for the petroleum company is C. With the
total number of tanks 7', we formulate the model for this problem in the following.

In determining when each tank should start inspection, we define

1  if tank 7 starts inspection in week j
5. =
|0 otherwise

where i=1.7 ,and j=1.52.
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This leads us to define a status variable for each tank:

{1 if tank i is in inspection in week j
a,=

0 otherwise

Since the objective is to maximize the minimum of 52 weekly net reserves, we

define the weekly net reserve as

T
RJ. =C‘-—Zagc, —DJ.
i=1

The objective function thus becomes

,
MAX{MINR, =C-> a,c,— D}
i=1

The constraints of this problem are caused by the needs of tank outage for open
inspection on a regular base, and the petroleum company decides that all inspections
must be completed in the same year. This can be translated into the following

constraints:
Constraint 1. All tanks must start inspection during this year.
Constraint 2. All tanks must finish inspection during this year.

Constraint 1 is expressed as
52

Zsy =L Vi

=l

Constraint 2 is expressed as

52
Z a, =m;, Vi
=

Jemy=1
;=1 should also imply Zaik =m, (j+m;—1<52), and this

Thus, &,
k=j

relation is expressed in the following constraints V7, j :
s, <My,

JHm=1

m; = ;aik SM(I—J’L")’
=j
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where y,; =0orl is to ensure that the constraint s, <0 must be satisfied, if

Jm, i
m, — Zark >0 is true; otherwise s, <0 may not have to be satisfied. Misa

]
b=y

Jn =1

large positive number, so that m, — Za,,r SM and s, <M hold for all variables
k=

that satisfy other constrains in the problem.

The complete IP model that consists of constraints and the objective function

looks like:

J=1
5, < My,
Jran—1
m, - Z a, SM(lwa)
k=j

Spa,y,=00rl Vi j

At this moment, the company has more than one thousand tanks in operation,
and each tank has its own capacity and requires a different maintenance period. On
the basis of predicted maximum loads for the next 52 weeks (see Table 1), and the
total capacity of 12,000,000 kiloliters, we apply the above IP meodel to find the
maintenance schedule for 5 tanks, 10 tanks, 20 tanks, and 50 tanks. For
confidentiality, we only show the data for the ten-tank case in Table 2. The model
was run using GAMS/CPLEX (GAMS/CPLEX, 2002) in PC/Windows 2000
Professional with P4/2.2GHz CPU and 768 megabytes RAM, and has found the
optimal solution for the 4 situations that is to allocate maintenance time to tanks and

maintain a net reserve of 9,875,000 kiloliters.
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Table1l The maximum loads in a year

Week 1 2 3 4 5 6

Maximum loads
1664516 1941935 1941935 1941935 | 2020391 2125000
in kiloliters

Week 7 8 9 e 51 52

Maximum leads
2125000 | 2125000 | 2036866 o 1896774 1896774
in kiloliters

Table 2 The capacity and maintenance weeks in the 10-tank case

Tank No. 1 2 3 4 5 6 7 ) 9 10

Capacity

. 1000 | 2400 | 1000 | 5000 [12000 | 9867 |14000 (15000 |15000 [25000
{kiloliters)

Maintenance

(weeks) 3 3 5 5 5 g 8 8 10 10

Table 3 iflustrates the execution time needed by the IP model, which indicates
clearly that it has grown exponentially as the number of tank increases, and the three
hours of computation time for 50 tanks is becoming unacceptable for management.
Despite the fact that IP does find optimal solutions, the steep increase of computation
time presents a grave concern to the management, because [P appears not capable of
dealing with more realistic number of tanks within a reasonable time frame. In
addition, most key data are ‘more of random nature than certainty; hence more
computer runs may be needed for adjusting tank maintenance schedule during the
course as more accurate information becomes available. As a result, the IP approach
may not be able to satisfy the needs of management that requires both good results

and efficient computation time.

Table 3 The execution time for the IP approach

Number of tanks 5 10 20 50

Execution time (seconds} 0.33 0.66 7.58 10056.75
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The Genetic-Based Heuristic Optimization
Algorithm

GA has been successfully applied to solve a variety of complicated problems in
search, optimization, and scheduling (Goldberg, 1989; Jain & Meeran, 1998),
however, it is known that GA could fall into the non-convergence situations in some
problems (Rudolph, 1994; Ting, Li & Lee, 2002). This problem is largely due to the
genetic operations in crossover and mutation that bring in diversity to a new
population. The fitness of GA improves rapidly in the beginning stages but slows
down considerably in the later stages due to too much diversity. GASA was
developed to overcome this deficiency, and could improve the convergence of GAs
by using a feature of simulated annealing (SA) (Sun, Dayhoff & Weigand, 1994) that
is another stochastic optimization technique. In the following, we will introduce the

GASA approach in detail that should also cover GA and SA.

1. Genetic-annealing Approach (GASA)

GASA is a combination of genetic algorithms and simulated annealing approach.
Genetic algorithms are stochastic and population-based search algorithms that
determine the locations and values of a set of points in the domain space. The
criterion for which new points are generated or old points are discarded is a function
of the existing population. In genetic algorithms (Goldberg, 1989), individuals
encode a set of decision variables by concatenating them in a bit string according to
their fitness in a manner similar to the way Nature uses chromoscmes. The initial
population is generated randomly and the population size is kept constant throughout

the process. The fitness £, of individual 7 is evaluated based on an objective function.

Only individuals with fitness larger than j_" , f’ =.1..Z" ] £+ are reproduced for the
p =

next generation. The effect of this reproduction scheme is that only above average
individuals are reproduced to replace poorly performing individuals. There are two
kinds of genetic operations that are applied to reproduce individuals: crossover and
mutation. First, individuals are paired at random for crossover. For example, the two
individuals [0 0|0 1 0] and [1 0 [ 1 0 1] are crossed-over at the location “|”. After
recombination, their offspring strings will be [0 0 1 0 1] and [1 @ 0 1 0]. Next, the

mutation operator is applied to form individuals by occasionally flipping random bits
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(genes) in the population to prevent the search from being trapped on a local

optimum (Holland, 1975).

The other technique used in GASA is simulated annealing (Kirkpatrick, Gelatt
& Vecchi, 1983) which is another well-known heuristic algorithm. It is Based on the
Boltzmann distribution in statistical mechanics. This method was developed for the
problems with non-convex objective functions, and is based on the analogy of the
physical process of annealing, which is a process for reducing the temperature of a
material to a state with minimum energy. In applications, its basic feature is the
possibility of exploring the solution space of the optimization problem by allowing
non-improving moves. The approach of simulated annealing is performed as follows.
Given an initial temperature /, the energy / of the initial solution (as the current
solution) is evaluated. In the following, makes a small random move in the current
solution and evaluates its energy. If the energy is improved (reduced), the move is

retained as the current solution otherwise the move is accepted with probability

-A
determined by Boltzmann probability distribution p = exp(Tf). After this move,

reduces the temperature ¢ according to an annealing schedule and iterates the
procedure of random-move, acceptance justification, and temperature reduction until
an equilibrium is reached. A simple annealing schedule can be defined as t' =at,

where #' is the new temperature and « is the decrease factor between 0 and 1.

The hybrid approach GASA combines features of both algorithms and is based
on the concept of “division” by energy. This new approach was designed to rectify
the problem with GA by reducing the‘ diversity of the new population in the later
stages of search, which is carried out by  performing crossover and mutation
operation only on chosen individvals. Based on the fitness of individuals, the
Component 2 of SA is applied to classify the group of individuals according to their
energy {objective values). High-energy individuals will conduct crossover and
mutation operations, whereas low-energy individuals are considered more stable and
therefore will not undergo these two operations. In such way, the diversity of search
is controlled and the final global optimum of the objective function can be achieved

in fewer generations.

The design of GASA is illustrated in Table 4; see (Sun, Dayhoff & Weigand,
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1994} for details.

Table 4 The pseudo code of the GASA algorithm

Generate randomly initial individuals in population P0);
Fork=1:N /* N is the number of temperature moves to attempt®/
=1 /* initial temperature ¥
Forg=0:G,,, *G
Evaluate fitness values of all individuals in P(g)
For each individual 7 in P(g)
Evaluate the energy change (f;- /* ) and set p,;

is the maximal number of generation */

max

If p, > random [0,1]
Keep individual { in pool P,
Else
Put individual i into P
Bnd_If
End_For
P,. = Select (P);
P,. = Crossover (P,);
Plgl=P,+ P,
For each individual / in P(g}
Evaluate the energy change (7 - /* ) and set p,;
If p, > random [0,1]

nes

Keep individual { in gene pool P,;

Else
Put individual { inte P,,;
End_If
End_For
P, =Mutate (P,.};;
Pg)=P,+P,;
g=g+1;
t= a*y
End_For
k=k+1,;
End For

In Table 4, an initial population P(@) is created randomly, then the population of
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the g-th generation P(g) is selected according to the fitness function 7 After that, the

Boltzmann-based probability pi=exp(£—i]will determine the qualified
t

individuals that are to be retained in the gene pool, and those unqualified ones will be
crossed-over. /* is the optimal fitness value in a population. Agaii- the procedure is
repeated by the mutation operation. Following a decrease in temperature (f = o * ¢,
the new population will experience the same procedures until the stopping criterion is
met, and ¢ is the decreasing factor for temperature that is usually a real number
between 0 and 1. The outermost loop is controlled by a parameter, V, the number of
temperature moves to attempt, which is application-dependently determined (Sun,
Dayhoff & Weigand, 1994). Upon completing the genetic operations, all the

individuals are placed back into the whole gene pocl for the next round of selection.

2. Problem Representation

In applying the genetic algorithm, we use a 52 bits (genes) length string, one bit
for a week, to represent the information of maintenance schedule of a storage tank, so
that the weeks of outage for that particular tank can be so indicated. Because of the
fact that the maintenance once started cannot be terminated half way, hence the
weeks of outage are shown as successive bits. A specific tank, within the 52 weeks of
scheduling period, can have a number of possible maintenance schedules that are
represented by different variations of bits. Figure 1 shows the 43 possible schedules
for a tank that requires 10 weeks of maintenance in 52 weeks, and a problem with »n
tanks will need 52 times # bits to represent just one possible combination string for
the scheduling # tanks, with each tank being encoded as one of its possible variation
strings. A complete encoding example of scheduling a 10-tank problem, given in
Table 2, is provided in Table 5, where the genes of tank 1 indicate its maintenance

being scheduled from week 4 thru 6, and week 2 thru 4 for the second tank and so on.
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Figure 1 The 43 possible variations for a tank with 10 weeks of maintenance

Table 3 Example of gene encoding for 10 tanks

Tank No. 1 2 9 10

Genes 00011100000---0 | 01110000000---0 | -~ | F1LHI111110---0 | QITTTI1T1111-+-0

On the basis of the chromosome representation, any disturbance in certain gene
caused by crossover or mutation represents a reorganized maintenance schedule for
the corresponding tank. The design of genetic operators has a profound influence
upon the performance of a GA model. We applied the popular one-points crossover
operation in this study, that is, the selected parents exchange the genes on the right-
hand side of the cuiting point. The mutation operator is designed to randomly change
one of the genes. The altered genes must also obey the major constraint that the

maintenance of a tank cannot be aborted half way. To ensure the validity of genetic
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operations, the cufting point is located at the boundary of two contiguous 52-bit.
Figure 2 shows an example of crossover operation, which recombines two valid
substrings from parents. Figure 3 demonstrates a mutation example in which the
second tank was randomly replaced by its 50 possible variations. In such a way, the

constraints on the number and sequence of maintenance periods for all tanks can be

enforced.
Tank 1 Tank 2 Tank n-7 Tank »
Parent 1 00011100000---0 § 11100000000--- TITTRIIT110--+0 | 11111111110--0
Parent 2 11100000000---0 | 01110000000--- OII11111111---0 | 01111111081 ---0
Child 1 00011100000---0 Il 01110000000:-- O1T11111111---0 | Q11111100 01---0
Child 2 11100000000---0 I‘ 11100000000-- - 111H1111110---0 | T1111111110+--0
Figure 2 Example of crossover operation

Before mutation | 00011100000---0 | 01110000000-+-0 {«-- |OQIT11111111---0|01111111111---0

o

After mutation 11100000000---0 | 00000001110--+0 [+ |O1111211111---0|01111112110+--D

Figure 3 Example of mutation operation

The fimess function of GA can greatly influence its performances; thus, one
must identify an effective function to evaluate the level of advantage that a
chromosome possesses. To achieve this, we use the objective function to evaluate the
merit of chromosome of this problem that is the minimum net reserve of 52 weeks as

shown in IP model of Section 2.
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Scheduling Results With Ga And Gasa

In order to investigate the performances of both GA and the GASA heuristic
optimization algorithm, we conduct a case study with the same data as those for IP
study above, and further investigate the feasibility of scheduling 100 tanks using both
methods. The GA and GASA algorithms are implemented using Matlab 6.1 on
PC/Windows 2000 Professional. Thus, there are five sets of storage tanks: 3, 10, 20,
50, and 100. The population is randomly generated every time with the crossover
rate being set to 0.8 and mutation rate 0.01. In GASA, the temperature in each

iteration is initialized to be 1 and its cooling factor « is set to be 0.85.

For problems with 5, 10, and 20 tanks, both GA and GASA achieve the same
fitness 9,875,000 kiloliters very efficiently as shown in Tables 6 and 7; this is the
optimal solution found with IP above. Table 7 presents execution time of GA and
GASA with different sizes of tank and populations. From this table, it is very clear
that GA and GASA need much less CPU time than the IP approach. For the more
complicated 50-tank case, the fitness of both methods are only slightly worse (0.3%)
than that found with IP, they are very good results, and they require only a small
fraction (1/30) of the CPU times of [P. Even for the most complicated 100-tank case,
GA and GASA can still obtain a near optimal fitness (98.4% of the optimal fitness,
found by IP) within a reasonable duration 669.57 and 676.00 seconds individually.
These results demonsirated the superiority of GA-based approach in dealing with

complicated tank scheduling problems in solution quality and execution time.

Table 6 The fitness comparison of GA and GASA

op. size 20 50 100
tanks GA GASA GA GASA GA GASA
5 9873000 9875000 9875000 9875000 9875000 9875000
10 9875000 9875000 9875000 9875000 9875000 9875000
20 9875000 9875000 9875000 9875000 9875000 9875000
50 9312000 9831040 9828000 9835807 9845874 9848500
100 9686233 9695823 9692404 9704124 9714186 9715133
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Table 7 The comparison of execution time in seconds of GA and GASA

tanks 5 10 20 50 10C
pop.
GA GASA GA GASA GA GASA GA GASA GA GASA
size
20 7.65 8.12 14.40 14.68 2742 28,16 69,31 68,21 [133.63 | 13630
50 18.86 19.45 | 3558 | 36.38 27,79 | 2795 (168,83 |170.96 |338.67 |341.80
100 37.54. | 37.80, | 70.57 71.48 |137.88 |139.04 |336.37 |340.57 |665.57 |676.00

We further investigate the performances of GA and GASA. For the smaller
problems of 5, 10, and 20 tanks, the results show an interesting coincidence, which is
the same fitness 9875000 kiloliters achieved by both GA and GASA no matter what
population size is chosen. This is a very unusual outcome. We discovered that the
model was able to identify week 6, 7, and 8 as having loads much higher than the rest
in a year and avoid scheduling tank maintenance during the three weeks, as shown in
Tables 1 and 2. Their net reserves in these weeks will be lower than the remaining 49
weeks even without maintenance schedule. Hence, for smaller number of tanks, the

resulting fitness that is to maximize the minimuim reserves will always be the same.

Figures 4 and 5 illustrate the maintenance scheduling with 10 and 20 tanks
using GASA with population size 100. Both achieve optimal fitness value 9875000,
The number of weeks for maintenance of a specific tank that is showing in Figure 4

is the same as that given in Table 2.

For more complicated problems such as 50 and 100 tanks, we conduct a
comprehensive comparison between the two algorithms. Figures 6 and 7 (a)-(c)
depict the convergence with different povpulation sizes for GA and GASA in the 50-

and 100-tank scheduling problems, respectively.
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The above results show that larger population sizes provide better diversity and

will result in better solutions for GA and GASA. They both obtain very good

solutions, and GASA could clearly achieve better solution quality than GA. Another

feature for GASA is the convergence speed; GASA can converge faster to reach the

best schedule in terms of generations than GA, which is particularly obvious in the

case of larger population sizes. This demonsirates the superiority of GASA in dealing

with more complicated problems than GA. Figure 8 shows the scheduling result of

100-tank problem using GASA with population size 100. It can be seen that more

concurrent maintenance can be scheduled and the need to schedule 6™ thru 8" weeks

as well.

135 7 91131517 1921232527 293133353739 4143 45 47 4951

weeks

Fgiure 8 The scheduling of 100-tank problem using GASA with population

size 100

Conclusions

This paper investigates the performances of the genetic-annealing approach,

GASA, for planning oil tank maintenance schedule to achieve the best minimum
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reserve for a petroleum company in Taiwan. The main features of GASA is the
application of adaptation and parallelism in GA, and the use of annealing technique
to identify the inferior individuals and force them to undergo genetic operations. As a
result, GASA becomes a multiple point search technique that examines a set of
solutions in parallel, and the stochastic nature of the algorithm helps the search
escape the local minima traps. With a set of real data, we conduct experiments with
IP, GA and GASA for comparison. IP method finds optimal solutions with expensive
computation time, and the later prevents it from being applied to large size problems.
Both GA and GASA can achicve very good results, optimal results with small sizes
of problems, with much better computation efficiency. GASA, with the help of
annezling technique that filters out inferior individuals before applying genetic
operations, outperforms GA in terms of solution quality and convergence efficiency.
Undoubtedly, the proposed scheduling algorithm GASA can better utilize tank
facilities and produce better revenue for existing companies, which are facing a steep

competition environment after the introduction of the liberalization laws.

While the performances of GASA have been satisfactory for up to 100 tanks, it
is not known if its performances will be acceptable for larger number of tanks, hence
future work should continue to explore the feasibility of applying GASA to handle
more tanks, perhaps up to 1000, so that petroleum companies can decide if it can be
adapted for only localized scheduling or national scheduling. Another important
issue that should be pursued in the future is the problem of planning horizon, which,
in practice, should be continuous year after year, rather than limited to 52-week, as is
done in this study. The present study may create the discontinuity problem between
two consecutive schedules, which should not be present in actual planning. One can,
of course, extend the horizon by increasing the number of weeks, the present method
will then require a lon'ger string, more bits, to represent each tank, and that may end
up requiring substantial amount of computation time than is allowed in actual

planning.
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